Sinc-Galerkin method for solving a class of nonlinear two-point boundary value problems

نویسندگان

  • S. Ahanj Iran University of Science and Technology
چکیده مقاله:

In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in the literature. The results of this paper confirm that our method is very fast, simple and considerably accurate.  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

sinc-galerkin method for solving a class of nonlinear two-point boundary value problems

in this article, we develop the sinc-galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. also several examples are solved to show the accuracy efficiency of the presented method. we compare the obtained numerical results with results of the other existing methods in...

متن کامل

A "Sinc-Galerkin" Method of Solution of Boundary Value Problems

Abstract. This paper illustrates the application of a "Sinc-Galerkin" method to the approximate solution of linear and nonlinear second order ordinary differential equations, and to the approximate solution of some linear elliptic and parabolic partial differential equations in the plane. The method is based on approximating functions and their derivatives by use of the Whittaker cardinal funct...

متن کامل

Application of variational iteration method for solving singular two point boundary value problems

In this paper, He's highly prolic variational iteration method is applied ef-fectively for showing the existence, uniqueness and solving a class of singularsecond order two point boundary value problems. The process of nding solu-tion involves generation of a sequence of appropriate and approximate iterativesolution function equally likely to converge to the exact solution of the givenproblem w...

متن کامل

B-SPLINE METHOD FOR TWO-POINT BOUNDARY VALUE PROBLEMS

In this work the collocation method based on quartic B-spline is developed and applied to two-point boundary value problem in ordinary diferential equations. The error analysis and convergence of presented method is discussed. The method illustrated by two test examples which verify that the presented method is applicable and considerable accurate.

متن کامل

Sinc-Galerkin method for solving linear sixth-order boundary-value problems

There are few techniques available to numerically solve sixth-order boundary-value problems with two-point boundary conditions. In this paper we show that the Sinc-Galerkin method is a very effective tool in numerically solving such problems. The method is then tested on examples with homogeneous and nonhomogeneous boundary conditions and a comparison with the modified decomposition method is m...

متن کامل

A numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method

In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 41  شماره 2

صفحات  333- 352

تاریخ انتشار 2015-04-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023